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The behavior of a material under compression is determined by its equation of state, 
which relates three (or more) thermodynamic parameters; for example, the pressure p, the tem- 
perature T, and the specific volume v. We consider barotropic processes for which the pres- 
sure is a single-valued function of the volume. In the general case of compression, the 
stress tensor is nonspherical; we shall, however, consider only states of isotropic ~ydro- 
static) compression in which the stresses are characterized only by the scalar p. Informa- 
tion concerning the behavior of a material under compression is gained from experiments in- 
volving isothermal (static) compression as well as from shock-wave measurements. At the 
present time, an isotherm for most materials is determined experimentally over a fairly nar- 
row interval, Av/vo = 0.2 to 0.i, of compression. For many material the shock adiabat Ps(V) 

�9 is known for vo/v in a range from two to three. In an interval of large compressions the 
equation for an isotherm or for the cold pressure 6the zero isotherm) is obtained in a variety 
of ways: i) The cold pressure is deduced from the shock adiabat upon making certain loosely 
justified assumptions concerning the behavior of the equation of state [1-3]; 2] the iso- 
therms of Birch and Keene [4] are obtained from various model representations; 31 the cold 
pressure is obtained theoretically with the aid of the method of the pseudopotential ~up to 
the present time this technique has been successful only for the alkali metals [5-7]); 4) an 
equation for the pressure is obtained by extrapolating experimental data without drawing on 
additional physical assumptions concerning the behavior of the equation of state of the 
material. 

We consider the last method. As the basic parameter defining the compressibility of a 
material, we have the modulus of compression 

K~(v) = --v(Op/Ov)~, 

(~ i s  t h e  i n d e x  o f  b a r o t r o p i c i t y ) ,  t h e  i n i t i a l  v a l u e  f o r  w h i c h  i s  known f o r  many m a t e r i a l s .  
As t h e  s i m p l e s t  e x t r a p o l a t i o n  o f  a b a r o t r o p e  we h a v e  t h e  e x p r e s s i o n  

p = (Kov/Vo)(Vo - -  v), p(vo) = 0, K0, = K~(vo), 

which  r e p r e s e n t s  t h e  f i r s t  t e r m  i n  t h e  T a y l o r - s e r i e s  e x p a n s i o n  f o r  t h e  p r e s s u r e  i n  t e r m s  of  
t h e  v o l u m e .  A more  e x a c t  e x t r a p o l a t i o n  can  be  had  i f  one knows an  e x p e r i m e n t a l  v a l u e  f o r  t h e  
d e r i v a t i v e  o f  t h e  modu lus  o f  c o m p r e s s i o n :  

g p  = (OK~/Op)~.. 

Then, putting Kp = const [4, 8], we obtain the equation 

p --- (Ko,,/Kp) [ (u0lv)~p-  t ] ,  

wh ich  i n  t h e  i s o t h e r m a l  c a s e  i s  r e f e r r e d  t o  as  M u r n a g h a n ' s  e q u a t i o n .  
p l a t i o n  o f  a b a r o t r o p e ,  e x p e r i m e n t a l  d a t a  a r e  c u r r e n t l y  augmented  by  means  o f  c e r t a i n  m o d e l  
r e p r e s e n t a t i o n s ,  f o r  e x a m p l e ,  by  a f u n c t i o n a l  f o r m  o f  t h e  i n t e r a t o m i c  i n t e r a c t i o n  p o t e n t i a l  
[ 4 ] .  A number o f  ways e x i s t  f o r  d e s c r i b i n g  b a r o t r o p i c  e q u a t i o n s .  However ,  f o r  p r a c t i c a l  u s e  
( f o r  e x a m p l e ,  t o  n u m e r i c a l l y  s o l v e  g a s d y n a m i c  p r o b l e m s ) ,  i t  i s  d e s i r a b l e  to  h a v e  a u n i f o r m  
form for the equation of a barotrope. In order to obtain uniform expressions for the baro- 
trope of various materials, extrapolating them more exactly than does ~), we introduce the 
auxiliary function 

B,(v) = (Kp + 1)/4 = - - ( v / 4 ) p " / p '  (2) 

(the primes indicate differentiation with respect to volume). In terms of the function By, 
we define the zero isotherm Be, the isotherm BT, the isentrope BS, and the shock adiabat B s. 
We calculate the pressure from (2) as follows: 

For a more exact extrap- 
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K~ [ exp 4 B v(x)/xdx dw. p (v) = P0 + -go a (3) 

We now establish some properties of the various barotropes B v. For qualitative estimates 
we use the Mie--GrUneisen equation of state, 

p(v) = pr + (y(~/v)(E - -  Ec), C4) 

where E is the specific internal energy; E c is the elastic energy; Pc is the cold ~lastic) 
pressure; and y(v) = 2 is the Grunelsen coefficient,assumed tobe a weakly varying quantity 
[9]. For r = (p --pa)/Koc << i, from (4) we obtain 

Bs (v) = 8~(v) + A s ( ~ ,  

where A S can be obtained when the function 7~v) is known. 
therm in the form 

T 

~,(v)~ C v d T  ' 
Pz = P c +  v j 

o 

We write the equation of an iso- 

from whence we obtain 

where AT(V) depends on y(v) and the heat capacity CV(V ). 

The function BS(V) has a fairly simple physical interpretation [8], namely, the follow- 
ing: At the initial point of the shock adiabat 

B s  (Vo) = Bs(Vo) = dU/du, ( 7 )  

where U is the shock-wave velocity and u is the particle velocity. The use of the functions 
BS(V) makes it possible to write the equations of one-dimensional isentropic gasdynamics in 
the form of the characteristics and the relationships on them in the following way: 

dx/dt  = u 4- c, d(u +- c)/du = 2B s (v) + t ,  

C = C o e X p ( 2 i ,  B s ( w ) / w d w )  ' (8) 

where x i s  a c o o r d i n a t e ,  t i s  the  t ime,  and c i s  the  sound v e l o c i t y .  The e m p i r i c a l  r e l a t i o n -  
ship 

U = a + bu, (9 )  

which approximates well the results of shock-wave measurements [i0] (a and b are constants), 
allows us to estimate the initial value of an isentrope through use of ~); thus, 

Bs (vo) ~ b = 1--2.  

The s ign  of  approximate e q u a l i t y  r e f l e c t s  the  f a c t  t h a t  the  r e l a t i o n s h i p  (9~ a p p l i e s  f o r  h igh  
pressures (high yield strength) when the compression can be considered to  be isotropic. 

In the limiting case v + O, a material can be considered to be a degenerate Fermi gas 
[ii], 

p ( v )  ..~ v -~/~, 

from which we have 

lira Bc, r,s = 2/3. 
V-*0 

The properties of the functions By(v), considered here, enable us to assume that in the 
absence of phase transitions (jumps in p' and p"), this function is bounded, B ~ i. It is 
therefore convenient to obtain the barotrope equation from (3), where B(v) is approximated by 
the Taylor series 

B(v) = Bo + B,(v - -  vo) + B2(v - -  vo) ~ + �9 �9 �9 (10)  

It is desirable to know how errors made in determining B(v) affect the determination of 
p ( v ) .  
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The expression (3) allows us to find the relationship between the variations ~B and ~p. 
Thus, we have 

r( TM )I 1 6 P [ / P ( V ) ~  exp 4 J ' ( 6B /w)  dw - - 1  ; 
\ v  

f o r  (vo -- v ) / v o  << 1 and  ~B = A = c o n s t ,  we o b t a i n  

16p[/p <~ 4[A[(vo--V)/Vo, 

w h i l e  f o r  t h e  v a r i a t i o n  16B] = Hn(V - v o ) n ~  by  w h i c h  we c a n  e s t i m a t e  t h e  r e m a i n d e r  o f  t h e  
series (i0) with n first terms, we obtain the expression 

[6pl~p = [4H~/(n = 1)]((v 0 - -  v)'vo) n+*. 

We use experimental data to determine the coefficients of the series (i0). Using data for 
an isothermal compression [12-15], we write the function ST(V) in the form B T = Be + Bx(v-- 
vo). We select the coefficients Be and B: from the condition of best approximation to the 
experimental data: 

q 

~ = [ m i n  (B o. B~)] i_._ X (i - -  p (v~, B o, BO/p~ (v~)) 2, 
qi=l 

where Pe~V) is the pressure, obtained experimentally; p~v, Be, Bx) is the pressure calculated 
from (3). Results from the calculations are presented in Table I. 

We note that for Na the values of Be, calculated with the aid of the data of the various 
authors, are close to one another. At the same time, the values of B= differ sharply from 
one another (see Table I), which forces one to doubt the possibility of calculating Bx in 
the remaining cases also. Consequently, to approximate the data from an isothermal compres- 
sion, it is sufficient in (i0) to take into account the first term; i.e., for the pressure 
we obtain an equation of the form (i). Taking the second term into account does improve the 
approximation to the experimental data but it does not add to our knowledge concerning the 
true behavior of p(v). We return now to the results of the shock-wave measurements and we 
attempt to obtain from them the successive coefficients in (i0). To do this, we establish 
relationships for the derivatives of Ps and PS with respect to the volume at the initial 
point of the shock adiabat, v = vo, Ps = PS = Po, Es = ES = Eo (E is the specific energy). 

We write the energy-balance equation upon passage through the shock. Thus, we have 

Es - -  Eo = @s + Po)(Vo - -  v)/2. (11)  

We w r i t e  t h e  d i f f e r e n c e  b e t w e e n  Ps and  PS i n  t h e  s e r i e s  f o r m  

Ps - -  Ps = a (E  s - -  Es) + ~(E s - -  Es) ~ + . . . .  (12)  

where 

m(v) = (Op/OE)v; ~(~ = (0~/0E2)+/2. 

The first term of the series corresponds to the Mie-Gr~neisen equation of state (2), where 
~(v) = y(v)/v. Differentiating (Ii) and (12), we obtain the first five derivatives, which 
do not contain 8: 

Ps = P s ,  P = P s ,  Ps p - - ( ~ / 2 )  ~ = PS, 

/ v )  p ~ )  - -  (3/2) ~Fs + [(3/2) a~ 5a ' l  Ps  - -  [5a" + ~a ' / 2  + (3/4) ~ ]  p~. = _ ~ ( I V )  -- ' "  

The first two equations are trivial and yield the known result ~), 

B s = B s. 

For the first derivative of B s we obtain 

B~ = Bx = B~ + (?/2v) B s, (14)  

where the value of ~ is replaced by y/v. The relation (14) allows us to obtain B~ from the 
experimentally known adiabat Ps(V); for this it is sufficient to know the initial value of 
the GrUneisen coefficient, which for the majority of materials is determined experimentally 
[33. 
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TABLE i. 

Case 

3 

-7 -  
5 

--7- 
--7- 

Mamrial 
investigated 

Na [12] 

[~31 

K [141 

Ca 115] 

8 Ba [J.5] 

T,  ~ 

400 

400 

201 

20 

0 

0 

0 

V 0 ' 

cmS/gm K0, kbar 

1,086 60,82 

1,086 60,82 

1,010 64,56 

0,986 74,91 

t, 1',)8 37,00 

t, 108 37,00 

0,645 182,63 

Bo 

1,21 

1,28 

I,i6 

1,09 

1,22 

1,25 

0,99 

voBt 

0 ~ 

0,67 

--0,13 

--0,13 

O* 

--0,31 

0,43 

Cale. Expfl. 
value value 

~.% 

1,2 0,2 

0,1 0,2 

t,3 0,2 

2,0 0,2 

0,7 0,5 

0,4 0,5 

0,5 

*The minimization of ~ in r was carried out only with re- 
spect to Bo; the value of Bx was set equal to zero. 

We can obtain the function Bs(v) through use of the empirical relation ~), from which 
we get an expression for the pressure all over again [8], and then we have 

B s (v) = b v y [ l  + (3/2)b(Vo - -  v)y l ' [ l  + 2 b ( v 0  - -  v)y], 0 . 5 )  

w h e r e  y = [vo -- b ( v o  -- v ) ]  - x .  The e x p r e s s i o n  (15)  d e s c r i b e s  B s ( v )  f o r  v < v*  < Vo; i . e . ,  
both it and (9) are suitable expressions over this interval. In Fig. 1 we show the function 
Bs(v/vo) for Na (curve i), where the solid curve corresponds to (15) for b = 1.26 ~ee [I0]) 
and the dashed curverepresents the assumed behavior in a neighborhood of v/vo = 1 (vo = 
1.086 cma/g, Bo = 1.2). From Fig. 1 it is evident that B s << i, and, therefore, upon 
neglecting this quantity, we obtain 

voBz = yBo/2 " ~ i  

(Y = 1.8 from [8]). The line segment 2 in Fig. 1 corresponds to a linear approximation for 
BS; the line segments 3, 4, and 5 correspond to a linear approximation for B T in accordance 
with the tabular data (data in rows 2, 3, and 4). We conclude, therefore, that the available 
experimental data is sufficient for extrapolating B S linearly with respect to the volume. 

To improve the extrapolation of BS(V) , it is desirable to know the following terms of 
! I! I! 

the series 0-0). Using (13), we can obtain B S and BS, independently of 8(v). Thus, for B S 
! 

we obtain an expression which contains Yo: 

B~ = 2B~ = B[ + aB~ -- 2a'B -5 2aB'/v. 
f I I  ! !  

An a n a l o g o u s  e x p r e s s i o n  c a n  b e  o b t a i n e d  f o r  B S , b u t  i n v o l v i n g  Yo- ,  At  t h~  p r e s e n t  t i m e ,  e x -  
p e r i m e n t a l  d a t a  [10 ]  do n o t  p e r m i t  e v e n  a c r u d e  d e t e r m i n a t i o n  o f  Yo and  Yo. 

A p p r o x i m a t e  t h e o r e t i c a l  e x p r e s s i o n s  a r e  a v a i l a b l e  w h i c h  r e l a t e  y ( v )  and t h e  c o l d  p r e s -  
s u r e  P c ( V ) .  T h e s e  e x p r e s s i o n s ,  o b t a i n e d  by  v a r i o u s  a u t h o r s ,  c a n  be  subsumed  i n  a common f o r m  
(see [3]), namely, 

?(v) = --(v/2)(pxVn)"/(P xvn)' -5 ~' 0.6) 

where n and ~ are constants; in particular, the values n = 0 and n = 2/3 yield, respectively, 
the formulas due to Landau--Slater and to Dugdale--MacDonald. Expressions for the cold pres- 
sure pc(V) of certain materials, obtained with the use of (16) and Eq. r have appeared in 
[1-33. 

Differentiating (16), we have 

v0?0 = n (2B - -  5/2 - -  ,,/2) -5 2B~v o. 0.7~ 
I! 

A similar procedure yields an expression for Yo- Factors such as the thermal pressure of 
the electrons, the heat capacity, the anharmonicity of the lattice vibrations, and others 
enter into the second term of ~2) and the fifth term of ~0). 
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At the present time, the approximate formula ( 1 6 )  wherein differing n values yield dif- 
! 

fering values of the initial derivative Yo, [see the relation ~7~, exhausts our knowledge 
of how the GrUneisen coefficient depends on the volume. Inaccuracy in the determination of 
y(v) begins to manifest itself in the third term of ~0~; therefore, to take into account a 
fifth term hardly leads to any refinement in the function BS~. To obtain the zero isen- 
trope (cold pressure) by means of our method, it is necessary to know the shock adiaSat of 
the material starting from a temperature close to absolute zero. For moderate temperatures 
we can neglect differences among BS, B T, and B c [see the relations ~) and ~)] and use the 
resulting B s to calculate the isothermal and the cold pressure in accordance with Of. To 
illustrate our method, in Fig. 2 we display Ps(V) for Cu, wherein the curves I, 2, and 3 cor- 
respond, respectively, to taking into account one, two, and three terms of the series ~0); 
curve 4 corresponds to the cold pressure Pc(V) from [2]. 

Uniformity of the barotrope equation is understood here in the sense of uniformity in 
the representation of Bv(v) by means of the power series (i0). From the latter we can obtain 
the function p(v) in the necessary form and with the necessary accuracy. For example, using 
two terms of (i0), B(v) = Be + B~(v -- v o ) ,  we can, with accuracy to O(v -- v~) '3, put 

from which we get 

B (v)/v = B2/(Bo + (B o - -  voBx) (v - -  re) ), 

where 

p(v) = [/r - -  l ) ] [ ((co § vip)/(o) § Vo/p)) ~o-* - -  t l, 

2 2 B~/(Bo B,vo). o = voBt/Bo; p = 

In the general case, B(v) may be extrapolated by means of several terms of the series 
(i0). The accuracy of such an extrapolation depends on the accuracy of the experimental 
data used and also on the magnitude of the remainder of the series (10). The extrapolation 
of B(v) can be improved if experimental values of B~v) are available for several values of 
v. To acquire such values, we can suggest two types of experiments: 

i. Measurement of the shock-wave velocity U and the particle velocity u ina precompress T 
ed (statically or dynamically) material. Then BS~V) = dU/du [see the relation 67~. 

2. Realization of a simple wave experimentally (the wave being one of either compres- 
sion or rarefaction). For an isentropic one-dimensional flow we obtain, from the relation 
along the characteristics ~8), the result 

O---(Ox/Ou)t = -4- (2Bs  + 1). 
Ot 

By measuring u(x) at two different times, we obtain Bs(u) from (18). 
we have the differential equation 

d~v/du 2 = • (2Bs  (u) + t)(dv/du)/v,  

which can be solved numerically for arbitrary B s (u). 

~8) 

For determining v(u) 
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Questions as to the feasibility of such measurements call for a separate study. 

The author expresses his thanks to Yu. I. Fadeenko for his statement of the problem and 
for valuable discussions. 
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